

Department of Electronics and Communication Engineering

Second Quarter E – Newsletter -2021-22

Head of the Institute	Message
Dr. Anand Deshpande Principal & Director, AITM	An Institute is assessed on the basis of the Academic ambiance and outcome of the system in terms of performance and achievements of the students and staff in teaching-learning, research, innovation, Placements, and results. AITM has been known for its Academic credentials coupled with holistic growth in all directions. The new generation of competent minds must imbibe knowledge and practically they should comprehend the art of balancing brilliant technical, managerial communication, and interpersonal skills, nest. The Institute has achieved a series of milestones with the help of brilliant students, dedicated staff, and encouraging Management. We promise a wonderful experience of rich Academic and Excellent facilities coupled with professional practices and blended with an affectionate concern for our Students.
Head of the Department	Message
	Welcome to the department of Electronics and Communication Engineering at Angadi Institute of Technology and Management, Belagavi. The Department was established in the year 2009 with the aim of providing leadership in the field of Electronics & Communication Engineering with an intake of 60 students. The department is located in a sprawling environment with a state of art facilities and highly qualified faculty. The department works with the objective of addressing critical challenges faced by the Industry, Society and the Academia. Perhaps even more important is our unceasing commitment to our students, helping
Mr. Raviraj Chougala HOD	them to learn, grow, develop, and achieve their goals in their pursuit to excel in their professional career.

Institute Vision and Misssion

Vision:

To become a premier institute committed to academic excellence and global competence for the holistic development of students.

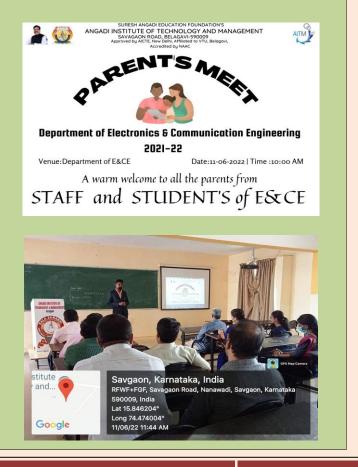
Mission:

- M1: Develop competent human resources, adopt outcome-based education (OBE) and Implement cognitive assessment of students.
- M2: Inculcate the traits of global competencies (such as domain expertise, Accountability, ethics, problem solving ability, communication skills, leadership Qualities and life-long learning) amongst the students.
- M3: Nurture and train our students to have domain knowledge, develop the qualities of global professionals and to have social consciousness for holistic development.

Department Vision and Mission

Vision:

To impart quality and responsive education in Electronics and Communication Engineering for the overall development of students to meet the global challenges.


Mission:

- M1: Adopt a transformative teaching-learning pedagogy to empower our students with domain knowledge and practical skills in resonance with technological developments.
- M2: Impart multi-disciplinary knowledge, and train our students to develop the relevant professional competency skills.
- M3: Create a cogent ambiance to comprehend the technical and management principles, and the efficacy of life-long learning.

Parents Meet

The department of Electronics & Communication conducted Parent Meet on 11/06/2022 at 10.00 am, AITM, Belagavi. All the department staff were present during the event. Parent teacher meeting covers the distance among three stakeholders. PTM opens a communication channel. Everyone is highly busy in his own task, profession and business. Teacher teachers a big number of students in different classes. Teacher is completing several tasks other than classroom teaching for maintaining piousness of an educational institution. Student is busy with reading, writing, completing class work and homework. Parent is busy with his profession for earning bread and butter for family.

Parent is a partner. Active participation of a parent brings massive change in kid's academic performance. His nature of nurturing brings natural and holistic changes in kid's personality. It is necessary to share responsibility and

accountability with parent for the holistic development of a child. Parent is directly responsible for child progress at home and in the school. In fact, it is necessary to develop a strong bridge between parent and educator. Wise parents never leave space for developing negative outcomes. Each and every moment and movement of child determines her/his future. Parent teacher meeting is an opportunity to exchange observation of a child with each other. Sharing daily experience and observation provide a wider prospect for parent and teacher to plan, prepare and execute planning for better learning outcome of a child. We discuss and share overall personality of a child with the teacher i.e. his/her behavior, manner, habit, attitude, learning styles, relation to self and society etc. PTM is a junction to meet the needs of child.

Department Hybrid Alumni meet

The Department of ECE organized Hybrid Alumni meet 2022 (SAMAAGAM) on 18th june 2022 at Angadi Institute of Technology and Management at 10.30 am, Belagavi. At the meet, around 35 alumni have registered and over 25 have actively interacted with students and faculties. During the meet department HOD, all the faculties of the department and HODs of other departments were present. Alumni have shared their thoughts regarding curriculum, job experience and recent technologies. Alumni refers to a group of students who have graduated from a school, college or a university. At an alumni meet, all the former graduates of a particular institution get together and cherish their past experiences and moments. Creating an engaged, supportive alumni network is crucial to institution's an success. If communication stops once graduates leave an institution, their understanding of the university will become stale. Instead, they should be kept informed so they can remain engaged and keep abreast on the progress of the university. By creating a community for an alumni group, the

Second Quarter E- Newsletter-2021-22

students can co-ordinate and reciprocate with each other. Planning will become much easier and ideas, views and opinions can be shared easily.

Vencer 2K22

Vencer was organized on 27th and 28th june 2022. It is cultural fest which is conducted every year in even semester; the fest is mainly focusing on exploring the hidden talent in budding engineers. The "Vencer" is organized every year by inviting Engineering students across Karnataka. The whole process is see-through by the invited Judges from relevant organizations. The winners of all the events are awarded by cash prizes and certificates of merit. The cultural activities enhance the confidence level of the students thereby allowing them to perform better. These activities develop the personality of the students and assist them in shaping a good career. In fact, students can also leverage the advantage of participating in various activities. College fests are usually a highlight in every student's college life. College fests act as a platform for students to showcase their innovative ideas, compete with their peers, and have a feel of the 'real world'. Especially technical fests. These are an amalgamation of fun and learning where spectacular ideas are displayed, and students learn and feel inspired.

Student Articles

Organic Electronics for a Better Tomorrow: Innovation, Accessibility, Sustainability INTRODUCTION: We live in an increasingly electronic world, with computers occupying a central part of our lives. In 2012, there were estimated 30-40 processors per person,

on average, with some individuals surrounded by	
as many as 1000 processors	
on a daily basis. While silicon electronics has	
solved many of the challenges	
associated with our increased use of electronics,	
there are limits to what	
silicon can do. Chemists are synthesizing a wealth	
of new organic materials for	
use in electronic devices that create novel	
properties impossible to replicate	
with silicon. These materials hold tremendous	
promise to expand our	
electronic landscape in ways that will radically	
change the way society interacts	
with technology. Organic Electronics for a Better	
Tomorrow: Innovation,	
Accessibility, Sustainability examines where	
organic electronics are today,	
where chemical scientists envision the field is	
heading, and the scientific and	
engineering challenges that must be met in order to	
realize that vision.	
"Organic electronics is a field of materials science	
concerning the design,	
synthesis, characterization, and application of	
organic small molecules or	
polymers that show desirable electronic properties	
such as conductivity."	
History:	
One class of materials of interest in organic	
electronics are	
electrical conductivity, i.e. substances that can	
transmit electrical charges with	
low resistivity. Traditionally, conductive materials	
are inorganic. Classical (and	
still technologically dominant) conductive	
materials are metals such	
as copper and aluminium as well as many alloys.	
The earliest reported organic	
conductive material, polyaniline, was described by	
Henry Letheby in 1862.	
Work on other polymeric organic materials began	

in earnest in the 1960s, A

Page 6

	high conductivity of 1 S/cm (S = Siemens) was reported in 1963 for a derivative of tetraiodopyrrole. Conductive plastics have undergone development for applications in industry. In 1987, the first organic diode was produced at Eastman Kodak by Ching W. Tang and Steven Van Slyke. <i>Organic Materials for Electronics:</i> Chemical scientists work with several different	
	of tetraiodopyrrole. Conductive plastics have undergone development for applications in industry. In 1987, the first organic diode was produced at Eastman Kodak by Ching W. Tang and Steven Van Slyke. Organic Materials for Electronics: Chemical scientists work with several different	
f I I I I I I I I I I I I I I I I I I I	Conductive plastics have undergone development for applications in industry. In 1987, the first organic diode was produced at Eastman Kodak by Ching W. Tang and Steven Van Slyke. <i>Organic Materials for Electronics:</i> Chemical scientists work with several different	
f I I I I I I I I I I I I I I I I I I I	for applications in industry. In 1987, the first organic diode was produced at Eastman Kodak by Ching W. Tang and Steven Van Slyke. Organic Materials for Electronics: Chemical scientists work with several different	
f I I I I I I I I I I I I I I I I I I I	for applications in industry. In 1987, the first organic diode was produced at Eastman Kodak by Ching W. Tang and Steven Van Slyke. Organic Materials for Electronics: Chemical scientists work with several different	
	Eastman Kodak by Ching W. Tang and Steven Van Slyke. Organic Materials for Electronics: Chemical scientists work with several different	
(((Tang and Steven Van Slyke. Organic Materials for Electronics: Chemical scientists work with several different	
((t	Organic Materials for Electronics: Chemical scientists work with several different	
C t	Chemical scientists work with several different	
t	Chemical scientists work with several different	
	types of organic materials in	
	their research on electronics. These materials	
i	include small molecules and	
t	polymers; fullerenes, nanotubes, graphene, and	
-	other carbon-based molecular	
	structures; ensembles of molecules and molecular	
	structures; and hybrid	
	materials. They use these materials to build	
	electronic structures and then	
i	integrate those structures into electronic devices.	
	Many of these devices are	
	early-stage prototypes, with major scientific and	
	engineering challenges still to	
	be surmounted before the prototypes can become	
	real-world products. But	
	others are already commercial realities, some	
	being used on a widespread	
	basis. For example, both small molecules and	
	polymers are being used in the	
-	manufacture of OLED displays (e.g., TV and cell	
	phone displays), solar cells, and	
-	transistors.	
(Carbon-based materials hold tremendous promise	
	for the field of organic	
	electronics because carbon comes in so many	
	different forms, with a wealth of	
	chemistries associated with those different forms	
(Carbon based materials are	
ł	being researched and developed mostly to create	
	bendable, or rollable,	
	electronic displays, solar cells, and other flexible	
	devices. But they are also	

being investigated for their charge storage	
potential, conducting ink capacity	
(e.g., graphene-based inks are being investigated	
for their use in security	
packaging such that tampering breaks the printed	
circuit, sounding an alarm),	
and other applications	
ORGANIC ELECTRONICS TODAY:	
Organic electronics is not a new field. Electronic	
devices made with organic	
materials already have multiple applications and	
have been widely	
commercialized, mostly in display (e.g., smart	
phone displays), photovoltaic,	
and transistor technologies.	
Organic light-emitting diodes (OLEDs) are built	
from one or more layers of	
organic and hybrid material (either small	
molecules or polymers) sandwiched	
between two electrodes (e.g., indium tin oxide), all	
on a plastic or other	
substrate. Unlike other display technologies, which	
require a backlight in order	
for the display to show, OLEDs generate their own	
light via	
electroluminescence and therefore they do not	
require backlights. They	
require less power and are more energy-efficient	
than backlight-dependent	
display technology.	
OLEDs are already widely commercialized in	
many Samsung and other	
Smartphone models. The Samsung Galaxy line of	
OLED-based Smartphone's	
occupies a significant portion of the global	
Smartphone market. Additionally,	
Samsung and LG Electronics have both announced	
forthcoming launches of	
large-screen OLED TVs. The new TVs are	
expected to not only be more	
spectacular than today's TV technology, with	
respect to crisper colours and	

Second Quarter E- Newsletter-2021-22

ANGADI INSTITUTE OF TECHNOLOGY AND MANAGEMENT BELAGAVI - 09

sharper contrasts, but also lighter, thinner, and more energy efficient. <i>ORGANIC ELECTRONICS: THE VISION FOR</i> <i>TOMORROW:</i> Organic materials give electronic devices unique properties impossible to achieve with silicon-based electronic structures, enabling a broad range of innovative "out-of-the-box" applications. Because of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
ORGANIC ELECTRONICS: THE VISION FOR TOMORROW: Organic materials give electronic devices unique properties impossible to achieve with silicon-based electronic structures, enabling a broad range of innovative "out-of-the-box" applications. Because of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	sharper contrasts, but also lighter, thinner, and	
TOMORROW:Organic materials give electronic devices unique properties impossible to achieve with silicon-based electronic structures, enabling a broad range of innovative "out-of-the-box" applications. Because of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere.Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body.As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency of oFETs; high-voltage FETs generate fatal levels of heat. CONCLUSION:Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	more energy efficient.	
Organic materials give electronic devices unique properties impossible to achieve with silicon-based electronic structures, enabling a broad range of innovative "out-of-the-box" applications. Because of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	ORGANIC ELECTRONICS: THE VISION FOR	
properties impossible to achieve with silicon-based electronic structures, enabling a broad range of innovative "out-of-the-box" applications. Because of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs, high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	TOMORROW:	
properties impossible to achieve with silicon-based electronic structures, enabling a broad range of innovative "out-of-the-box" applications. Because of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	Organic materials give electronic devices unique	
achieve with silicon-based electronic structures, enabling a broad range of innovative "out-of-the-box" applications. Because of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
enabling a broad range of innovative "out-of-the-box" applications. Because of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
 innovative "out-of-the-box" applications. Because of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable 		
of the unique structural and functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	0	
functional variation of organic materials, arguably one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	**	
one of the greatest areas for innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	-	
 innovation in the field of organic electronics is in sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable 		
sensing that is, the use of electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
electronic devices to sense chemical or biological substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	C	
substances in the environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	-	
environment, in or on the human body, in food and water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
 water, or elsewhere. Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable 		
Not only are organic electronic structures more chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	-	
chemically compatible with biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
biological systems than silicon based devices are, they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
they also enable a flexibility, stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	• •	
stretch ability and mechanical "softness" not possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
possible with silicon. Together, these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
these properties create the potential for innovative bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
bio-electronic sensors that can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
can conform to the curvature and moving parts of the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
the human body. As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
As with organic solar cells, chemical scientists and engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
engineers hope to improve the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
the energy efficiency of organic transistors as well, in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	As with organic solar cells, chemical scientists and	
in the case of OFETs by lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	engineers hope to improve	
lowering their operating voltages. Lowering OFET operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	the energy efficiency of organic transistors as well,	
operating voltages is more than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	in the case of OFETs by	
 than an energy efficiency goal. It will also allow chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable 	lowering their operating voltages. Lowering OFET	
chemists to take advantage of the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	operating voltages is more	
the biocompatibility of OFETs; high-voltage FETs generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	than an energy efficiency goal. It will also allow	
generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	chemists to take advantage of	
generate fatal levels of heat. <i>CONCLUSION:</i> Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	the biocompatibility of OFETs; high-voltage FETs	
CONCLUSION: Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable		
Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable	0	
and less expensive than inorganic conductors. This makes them a desirable		
inorganic conductors. This makes them a desirable		
	-	
alternative in many	alternative in many	

AITM

applications. It also creates the possibility of new applications that would be impossible using copper or silicon. Organic electronics not only includes organic semiconductors, but also organic dielectrics, conductors and light emitters. New applications include smart windows and electronic paper. Conductive polymers are expected to play an important role in the emerging science of molecular computers.

By Prajwal G. ECE Department

FASTEST GROWING TECHNOLOGY

Wireless Communication Definition:

Wireless communication is the fastest growing and most vibrant technological areas in Mobile phones, GPS receivers, Remote controls, Bluetooth audio and Wi-Fi etc. The communication field. Wireless communication, or simply sometimes wireless, is the transfer of information or power between two or more points that are not connected by an electric conductor. We live in a world of communication and wireless communication, in particular is a key part of our daily lives. Some of the commonly used wireless communication systems s in our day to day life are:

Types of Wireless Communication:

Wireless communication technology is categorized into different types depending on the distance of communication, the

range of data and type of devices used. The following are the different types of wireless communication technologies.

1. Television and Radio Broadcasting: Radio is considered to be the first wireless service to be broadcast. It is an example of simplex communication system where the information is transmitted only in one direction and all the users receiving the same data.

2. Satellite Communication: Satellite Communication System is an important type of wireless communication. Satellite Communication System offer telecommunication, positioning and navigation.

3. Wireless Local Area Network (Wi-Fi): Wi-Fi is a low cost and low power wireless communication, that is used by various electronic devices like smart phones, laptops etc. in this setup, a router works as a communication hub wirelessly.

4. Global Positioning System (GPS): GPS is solely a subcategory of satellite communication. GPS provides different wireless services like navigation, positioning, location, speed etc. with the help of dedicated GPS receivers and satellite.

5. Mobile Communication System: The advancement of mobile networks is enumerated by generations. Many users communicate across a single frequency band through mobile phones. Similar to GPS devices, some phones make use of signals from satellite to communicate.

Advantages of Wireless Communication:

 \Box Information can be transmitted quickly with a high speed and accuracy.

 \Box The internet can be accessed from anywhere, at any time without any cables or wires.

 $\hfill\square$ Emergency situations can be alerted through wireless communication.

 \Box Wireless, no bunches of wire running out.

 \Box Communication can reach where wiring is not feasible and costly.

Disadvantages of Wireless Communication:

 \Box An unauthorized person can easily misuse the wireless signals which spread through the air.

 \Box It is very important to secure the wireless network to protect information.

 \Box Continuous exposure to any type of radiation can be hazardous and affect the health.

Applications of Wireless C	ommunication:	
Wireless Communication h	as wide applica	tions in
the areas of Space, Militar	y, telecommuni	cations,
Wireless power transm	ission, IOT,	Radar
communication, Artificia	intelligence,	Fiber
optics and intelligent transp	ort systems.	
By Neha Singh		
ECE Department		

